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Summary

The recent development of complex chemical and small
interfering RNA (siRNA) collections has enabled large-
scale cell-based phenotypic screening. High-content and
high-throughput imaging are widely used methods to
record phenotypic data after chemical and small interfering
RNA treatment, and numerous image processing and
analysis methods have been used to quantify these
phenotypes. Currently, there are no standardized methods
for evaluating the effectiveness of new and existing image
processing and analysis tools for an arbitrary screening
problem. We generated a series of benchmarking images
that represent commonly encountered variation in high-
throughput screening data and used these image standards
to evaluate the robustness of five different image analysis
methods to changes in signal-to-noise ratio, focal plane,
cell density and phenotype strength. The analysis methods
that were most reliable, in the presence of experimental
variation, required few cells to accurately distinguish
phenotypic changes between control and experimental
data sets. We conclude that by applying these simple
benchmarking principles an a priori estimate of the image
acquisition requirements for phenotypic analysis can be
made before initiating an image-based screen. Application
of this benchmarking methodology provides a mechanism to
significantly reduce data acquisition and analysis burdens and
to improve data quality and information content.

Introduction

The sequencing of multiple eukaryotic genomes coupled
with the discovery of RNA-mediated inhibition (RNAi) has
enabled genome-wide screens for gene depletion phenotypes
in metazoan cells and organisms. Libraries of small molecules,
traditionally restricted to pharmaceutical drug screening, are
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now available to a wide range of researchers for phenotype-
based screening of chemical compounds. These inhibitor
collections have led to numerous successful high-throughput
screens for protein and pathway inhibition in metazoans,
and high-throughput imaging has become a central method
for recording and assessing biological phenotypes in these
screens (Perlman et al., 2004; Agaisse et al., 2005; Erhardt
et al., 2008). Microscopic imaging can quantitatively capture
depletion, localization and morphological changes in cells, but
manual analysis of large high-throughput image data sets is
impractical and thus requires the development of automated
tools to extract, classify and measure the relevant information
in the images.

Automated image analysis involves segmenting the image
to identify the relevant objects for analysis followed by
quantification or classification of the segmented objects.
Numerous image segmentation methods have been developed
and applied to problems in computer vision, medical imaging
and biological imaging, but no one method is optimal
for all image segmentation problems. Image data sets for
development and benchmarking of segmentation techniques
have been developed for many different image types, but
there exists no generally applicable data set for all object
identification tasks (Martin et al., 2001; Li et al., 2007; Shamir
et al., 2008) reviewed in (Peng, 2008).

Analysis methods for biological image data sets from high-
throughput screens have ranged from the most laborious
manual inspection of the images to automated computational
methods to rapidly screen through large image data sets
(Mayer et al., 1999; Gonczy et al., 2000; Kiger et al., 2002;
Yarrow et al., 2003; Neumann et al., 2006). Computational
tools and software suites have been developed to facilitate
identification of cells and subcellular features in high-
throughput image data sets (Goldberg et al., 2005; Baatz et al.,
2006; Carpenter et al., 2006; Glory & Murphy, 2007; Orlov
et al., 2008). To date, the workflow for most image-based
high-throughput screens involves collecting the screening
data and empirically sampling and adjusting different image
analysis methods until the desired information set is extracted
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from the screen data. This process is usually undertaken after
the experimental phase of the screen is complete, and therefore
little information about the analysis method feeds back into
the data collection.

Here we propose and implement a new screening
methodology that uses statistical analysis of benchmarking
experiments preceding a screen to quantitatively assess the
performance of image analysis. We then propose the use
of those analysis method assessments to guide the creation
of the entire screen. Specifically, we generate benchmark
image data sets that are tailored to our desired screens
and that recapitulate common variation encountered in
high-throughput screening (e.g. variation in signal-to-noise,
phenotype strength, focal plane and cell density). We
quantitatively compare different image segmentation and
analysis routines on our benchmark data sets to refine the
image analysis methods. We show that the best analysis
method of a group can be quantitatively determined, and the
amount of data required to detect a particular phenotype to
a desired significance level can be accurately predicted before
performing the entire screen. The methods we present should
allow significant savings in acquisition and analysis costs and
facilitate the collection of higher quality data with improved
information content.

Materials and methods

Experimental

Cell culture. Drosophila melanogaster Kc167 cells were
grown in Schneider’s media (Gibco), supplemented with
100 U/mL penicillin, 100 μg/mL streptomycin (P/S) and 10%
foetal bovine serum (FBS) and passaged by trypsin/EDTA
treatment and manual scraping. For RNAi experiments, cells
were washed in unsupplemented Schneider’s media and
resuspended to a concentration of 2.5 × 106 cells/mL. Two
hundred microlitres of the cell suspension was added to a sterile
plastic tube, and dsRNA was added from a stock in sterile water
to a final concentration of 100 nM for standard experiments or
lower to generate intermediate phenotypes. Control cells were
treated with an equivalent volume of sterile water. Cells were
incubated for 45 min at room temperature and then plated in
one well per treatment of a 24-well culture dish. Schneider’s
media, supplemented with P/S and FBS, was added to each
well to give a final volume of 1 mL. Cells were incubated in the
dark at room temperature for 16–72 h as indicated.

Human HeLa cells were grown in Dulbecco’s modified
Eagle’s medium (Invitrogen), supplemented with 100 U/mL
penicillin, 100 μg/mL streptomycin (P/S) and 10% FBS and
passaged by trypsin/EDTA treatment.

For drug treatment experiments, HeLa cells were treated
for 8 h with nocodazole (Sigma) to a final concentration of
0.5 μg/mL in Dulbecco’s modified Eagle’s medium with P/S
and FBS, after which mitotic cells were shaken off by striking

the plate of cells, and replated onto poly(L-lysine)-coated cover
slips in serum-free Dulbecco’s modified Eagle’s medium with
P/S. For control populations, cells were passaged directly onto
cover slips.

Immunofluorescence and microscopy (Kc167 cells). Cells
growing in 24-well dishes were harvested, after aspiration
of the growth media, by treatment with 0.5 mL trypsin/
EDTA for 5 min, addition of 1 mL Schneider’s with P/S and
FBS, and vigorous pipetting with a 2 mL plastic pipet. Wells
were washed with an additional 1 mL Schneider’s with P/S
and FBS, and this wash was pooled with the original. Cells
were collected by centrifugation and resuspended in 100 μL
Schneider’s medium with P/S and FBS then pipetted over a 16-
fold range of dilutions onto acid-washed, poly-L-lysine-coated
glass 12-mm cover slips and allowed to adhere for 1 h in a dark,
humidified chamber. Cells on cover slips were fixed for 3 min
in room-temperature methanol. Cover slips were rehydrated
in 20 mM Tris–HCl pH 7.4, 150 mM NaCl with 0.1% Triton
X-100 (TBST) and blocked for 30 min in antibody dilution
buffer (AbDil, TBST with 2% bovine serum albumin and 0.1%
sodium azide). Mouse anti-heterochromatin protein 1 (HP1)
antibodies (Developmental Studies Hybridoma Bank, clone
C1A9) were diluted 1:500 in AbDil and incubated on each
cover slip for 1 h at room temperature. Cover slips were washed
in AbDil and incubated for 1 h at room temperature with
a 1:500 dilution of Alexa488-conjugated goat anti-mouse
IgG (Invitrogen) in AbDil. Cells were stained with 10 μg/mL
Hoechst in AbDil, washed in TBST and mounted on slides
in 20 mM Tris pH 8.8, 0.5% p-phenylenediamine and 90%
glycerol.

Cells were imaged using a 40× 0.9 NA objective using a
Nikon Eclipse 80i microscope, and images were acquired with
a Princeton Instruments Coolsnap HQ 12-bit CCD camera.
Images were axially adjusted during acquisition to correct for
chromatic aberration according to predetermined calibration
standards created using 0.5-μm Tetraspeck fluorescent
microspheres (Molecular Probes). Exposure time was set so
that control cells brought the camera to three-fourths of its
saturation value. The benchmarking set of images was taken
by acquiring 25 Z-sections of each cover slip at 0.4 μm offset
(corresponding to −4.8 to +4.8 μm) with 1/512, 1/128,
1/64, 1/32, 1/16, 1/8, 1/4 or 0 neutral density filters in the
excitation light path, or with double the exposure time and no
neutral density filters in place.

Immunofluorescence and microscopy (HeLa cells). Rabbit
polyclonal antibodies against human HP1α were generated
using an N-terminal GST fusion to amino acids 66–119 of
human HP1α. This fragment was chosen as the region of
the protein least conserved among the three human HP1
variants. The GST-tagged protein fragment was purified using
glutathione agarose for antibody generation. Rabbit serum
was purified over an affinity column of the same HP1α peptide
(untagged) used to generate the antibody.
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Cells on 12-mm glass cover slips were fixed for 5 min
in 150 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM
KH2PO4, 0.1% Triton X-100 (PBST) with formaldehyde added
to 3.7%. Cover slips were washed in TBST, blocked in AbDil
for 30 min and stained with a solution in AbDil of mouse
anti-αTubulin (1:500) (Sigma, mouse clone DM1α), rabbit
anti-HP1α (1:500) and Atto488-conjugated phalloidin (13.3
U/mL) (Sigma), for 1 h at room temperature. Cover slips
were washed in AbDil and incubated for 1 h at room
temperature in a solution of Alexa647-conjugated goat anti-
mouse IgG (1:500) (Invitrogen) and Alexa568-conjugated
goat anti-rabbit IgG (1:500) (Invitrogen) in AbDil. Cells were
stained with 10 μg/mL Hoechst in AbDil, washed in TBST
and mounted on slides in 20 mM Tris pH 8.8, 0.5% p-
phenylenediamine and 90% glycerol.

Cells were imaged using the same equipment and calibration
as for the Drosophila cells. Exposure time was set so that control
cells brought the camera to three-fourths of its saturation
value, except in the Alexa647 channel, where this resulted
in a prohibitively long exposure time, and the exposure was
set to bring the camera to one-fourth of its saturation value.
The benchmarking set of images was taken by acquiring 21
Z-sections of each cover slip at 0.8 μm offset (corresponding
to −8.0 to +8.0 μm) with 1/512, 1/64, 1/16, 1/4 or 0
neutral density filters in the excitation light path, or with
double the exposure time and no neutral density filters in
place.

Preparation of RNAi constructs. A fragment of the HP1 gene was
PCR amplified from plasmid ASP508 using primers forward:
tggcgcccctagatgCCCTCTGGCAATAAATCAAAA, and re-
verse: cgacgcccgctgataTTAATCTTCATTATCAGAGTACCA,
and purified by agarose gel electrophoresis and
extraction (Qiagen). T7 promoters were added to each
end by a second PCR step using primers forward:
GCGTAATACGACTCACTATAGGGtggcgcccctagatg, and
reverse: GCGTAATACGACTCACTATAGGGcgacgcccgctgata,
and purified as before. The purified template was in vitro
transcribed using T7 polymerase at 0.4 μg/mL and yeast
inorganic phosphatase at 0.015 U/μL (Sigma) in 40 mM
Tris–HCl pH 8.0, 10 mM DTT, 20 mM spermidine, 20 mM
MgCl2 and 7.5 mM (each) NTPs, and incubated for 5 h at
37◦C. Subsequently, the reaction was treated with 3 μL
RNAse-free DNAse at 2 U/μL (Ambion) and incubated for
30 min at 37◦C. The RNA was then purified using an RNeasy
kit (Qiagen) and eluted into RNAse-free sterile water at a final
concentration of 1.1 mg/mL.

Computational

Algorithms for object detection. For the Drosophila data set, five
methods for object detection based upon the literature were
implemented using C++. Source code for all programs used
is available online at http://straightlab.stanford.edu/software

under the Mozilla Public License. Method 1, referred to as
the recursive thresholding method, was based upon the
recursive Otsu method described by Xiong et al. (2006).
Briefly, the original image was thresholded according to Otsu’s
method. Subsequently, objects larger than 1000 pixels in
area were isolated, and Otsu’s method was applied recursively
within each area until regions smaller than 1000 pixels were
obtained. During this process, if regions smaller than 25 pixels
were produced they were discarded.

Method 2, referred to as the graph/thresholding method,
was based upon the algorithm of Felzenszwalb and
Huttenlocher (2004). After the graph-based approach was
applied to the image, the original image was thresholded
according to the method described by Otsu (1979). Objects
determined by the graph method were then excluded if their
mean intensity value fell below the determined threshold.
Objects that were still in contact after the thresholding were
joined into single objects, and then regions that were more
than 1.4 standard deviations (SDs) below or 1 SD above the
mean area of the remaining regions were excluded.

Method 3, referred to as the graph/size method, was based
on the same graph-based method as the method 2. The original
image was blurred with a Gaussian filter of SD three pixels, and
then the graph method was applied as described to segment
the entire image into regions. Regions were then separated
into foreground and background by applying an absolute size-
exclusion filter excluding objects smaller than 500 pixels or
larger than 4000 pixels, and then applying a second size-
exclusion filter in which objects were excluded if their area
was more than 1.4 SDs below or 1 SD above the mean area of
the remaining regions.

Method 4, referred to as the thresholding/size method,
was assembled based upon various textbook pieces for
object detection in images [as described, for instance, in
(Gonzalez & Woods, 2002)]. Briefly, a 16-bit TIFF image was
convolved with a Gaussian kernel of 21-pixel SD, and then
the Sobel gradient was calculated by convolution with a 3 ×
3 pixel kernel. The Sobel gradient was then thresholded at
a very low level (an intensity value of 9 of 4095) to loosely
determine the areas in which the cells were located. The
original (smoothed) image was also thresholded based on
intensity at a low level (10 of 4095 intensity), and within
the intersection of the low gradient-thresholded and low
intensity-thresholded areas, the image was then intensity
thresholded again as follows. A histogram of pixel intensities
(within the intersection of the two prior thresholded areas),
and the mode value (i.e. the maximum of the histogram)
was calculated. This value represented the background noise
in the image. The approximate half-width at half-maximum
value of the background noise was then calculated from the
histogram, and the image intensity was thresholded at the
mode value plus 45 times the half-width at half-maximum
of the noise distribution. In practice, setting the threshold at
a fixed number of half-width at half-maximum values only
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worked due to the low-level thresholding of the gradient,
which restricted the background noise to a roughly similar
area surrounding the objects in each image. Finally, the
foreground of the image was labelled as individual regions,
and each region was excluded from the final mask if it was
smaller than 500 pixels in area or larger than 4000 pixels in
area.

Method 5, called the watershed method, is a commonly
used algorithm for segmentation of biological images, and
was implemented as described by Gonzalez & Woods (2002).
Briefly, the original image is successively thresholded starting
near the maximum image intensity and decreasing in steps
equal to 10% of the difference between the minimum and
maximum intensity. At each step, the connected components
above the threshold are identified. If at any step after the first
two formerly disjoint components are joined, these are divided
as follows. The two joined components are restored to their last
disjoint state and gradually grown by morphological dilation
until they fill the entire space of the joined component. If at any
point a pixel is added to the dilation that would cause joining
of the components, this pixel is permanently set as a ‘dam’
dividing the two components. If two pixels are simultaneously
added that would cause the joining of two components only
when considered together, a dam of zero thickness is added
between them, permanently separating the two components.
After all the thresholding iterations are complete, a mask
resulting from the thresholding of the original image at 10%
of background-corrected maximum intensity is applied to
the mask resulting from the formation of dams so that only
foreground pixels are contained in the final mask.

Seeded algorithms for object detection. For processing the human
cell data set, a seeded version of each of the five algorithms
was implemented using C++; source code is available in the
same location and under the same license as for the non-
seeded versions. In general, a seeded segmentation algorithm
incorporates pre-existing information on the general location
and number of regions that should result from segmentation
to be able to solve more difficult segmentation problems.
Specifically, the seeded algorithms developed use cell nuclei
(as found by applying the recursive thresholding method to
the DNA-stained images) to seed the segmentation of cells
based on actin-stained images. Except as described later, the
seeded version of each algorithm was the same as the non-
seeded version. For all seeded methods, a final step was added
where regions were filled such that any pixels not in a region
but completely surrounded by a single region were added to
that region. Each method can produce boundaries of zero
thickness between objects, so what appears as a single object
when viewing the masks may be multiple objects.

Method 1, the recursive thresholding method, was modified
so that the decision to recursively apply the thresholding
algorithm to a region was based not on size, but whether
that region had pixels in common with more than one seed

region. If a region had more than one seed, it was recursively
segmented until only one seed per region was present. Finally,
regions not containing any pixels in common with a seed
region were discarded from the final output.

In method 2, the graph/thresholding method, the size-
exclusion step was removed, and regions not containing any
pixels in common with a seed region were discarded from the
final output.

For method 3, the graph/size method, the step in which
regions were excluded based on the mean/SD of region size
was removed. Regions not containing any pixels in common
with a seed region were discarded from the final output.

Method 4, the thresholding/size method, was modified
most extensively. The Gaussian filtering and gradient-based
thresholding were eliminated completely. Instead, the method
began directly with the thresholding based upon the noise
histogram step. Then, the threshold was iteratively adjusted
(up or down) to make the number of connected components
in the thresholded image match as closely as possible to the
number of seed regions. Regions not containing any pixels in
common with a seed region were discarded. Finally, the same
size-exclusion step as for the non-seeded version was applied,
but with a size cutoff of 500–100 000 pixels to reflect the larger
size of HeLa cells.

Method 5, the watershed method, was modified according
to standard practice (Gonzalez & Woods, 2002) for using this
method in a seeded context. Briefly, the seed regions were
used as a starting point for the watershed segmentation before
beginning the successively lower thresholding. At each step,
any components not containing pixels in common with a seed
region were discarded, and ‘dams’ were only inserted between
components that each contained a seed region.

Quantitative phenotype assessment. For the Kc167 cells, once
regions had been created by one of the segmentation methods,
the phenotype was assessed as a scalar value for each region
by dividing the integrated intensity of the FITC channel
(corresponding to HP1 protein) by the integrated intensity
of the Hoechst channel (DNA) within each region.

For the HeLa cells, once regions had been created using
the segmentation methods, the integrated intensity of the
Alexa568 channel (HP1) in each region but not in a seed,
and the integrated intensity of the HP1 in each region’s seed
were both calculated. The phenotype was assessed as the area-
normalized ratio of the HP1 in the seed (DNA-associated)
to the HP1 in the segmented region but not in the seed
(cytoplasmic).

Benchmarking comparisons. We made two types of assessments
with regard to benchmarking: phenotype- and segmentation-
based. For phenotype-based comparisons, we simply applied
each method to the full set of benchmark images and compared
the average phenotype assessment for each image over the
range of benchmarks.
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To assess the quality of image segmentation by each method,
we manually segmented each benchmarking image using
Metamorph software (Molecular Devices). For the Kc167 cells,
manual segmentation consisted of placing circles, 31 pixels
in diameter, around each nucleus. This method was chosen
because placing circles of fixed diameter is significantly faster
than placing variable-sized circles, and in practice most nuclei
were approximately this size. As assessed by eye, the largest
nuclei were typically no more than 1.5 times as large as this.
For HeLa cells, manual segmentation consisted of drawing a
polygon approximation to the cell outline in the actin channel.
The number of sides varied from cell to cell and was chosen
to be near the minimum number that still produced a close
approximation to the cell outline. The manually segmented
regions were then converted to a binary mask to identify the
regions of interest.

For a given image, the manual mask and the masks
produced by each of the five automated methods were
compared using a Python script or Java program that classified
each cell as belonging to (possibly multiple, but at least one of)
five categories: correct, missed, false positive, undersegmented
or oversegmented. Correct regions were defined as those where
the mapping between manual and automatic regions was
one-to-one. Missed regions were those regions found in the
manual mask but with no region overlapping them in the
automated mask. False positives were those regions in
the automated masks with no overlapping region in the
manual mask. Undersegmented were those regions in the
automated masks that overlapped with multiple regions in
the manual mask. Oversegmented were those regions in
the manual mask with multiple regions overlapping in the
automated mask. For the Kc167 cells, ‘overlap’ was defined as
having at least one pixel in common. For the HeLa cells, this
definition was loosened to having 10% of the number of pixels
in the manually segmented region in common (otherwise all
regions were in general labelled as overlapping and no useful
information resulted from this analysis).

The signal-to-noise ratio was calculated for each
image using the manually created mask using the
formula S/N = [(average foreground intensity −
average background intensity) × photons per grey level]/√

(average foreground intensity × photons per grey level),
where the number of photons per grey level is 3.1 for the
camera and settings used. This is the signal-to-noise resulting
from photon counting noise in the foreground [as discussed
in (Rasnik et al., 2007), e.g.], which is a reasonable estimate
when concerned with how the S/N varies with differing
exposure or filtering for the same field of cells. Another
more common way of calculating signal-to-noise is to use
S/N = (average foreground intensity)/(SD of foreground
intensity). However, this method was not appropriate for
our images because both the DNA staining for the Kc167
cells and the actin staining for the HeLa cells were highly
variable within single regions, due to variations in DNA

density (heterochromatin) or density of the actin network,
which would cause the S/N resulting from the properties
of the imaging itself to be obscured by cell-to-cell and
image-to-image differences in the variance of this density.

Determination of data acquisition requirements. We used the
two-sided rank sum test to assess the statistical significance
of any observed phenotypes. As a nonparametric test, the
two-sided rank sum test was ideally suited for our observed
phenotype distributions, which in many cases were far
from Gaussian or any other recognizable distribution. As
a threshold for significance, we chose P < 10−9 because
we desired significance at the 10−3 level, and screens often
contain on the order of 105–106 images.

To determine how many cells were required to attain
significance at this level, we repeated the rank sum test using
the entire population of control cells but smaller random
samples of varying sizes from the phenotype population
(ranging from five cells to the entire population). We then
took the number of cells required as the smallest sample that
produced an average P-value less than 10−9 over at least 100
random samples of that size.

Results

Image analysis and benchmarking

To comparatively assess image segmentation methods
for phenotypic screening, we implemented five different
segmentation methods (described in detail in Section
‘Materials and methods’) (Fig. 1A,B). We chose one method
(recursive thresholding) based on recursive application of
intensity thresholding that had been used previously for
high-throughput image analysis on the Kc167 cells used in
this study (Xiong et al., 2006; Chen et al., 2008), a second
method (graph/thresholding) that combined the recursive
thresholding with a graph-joining segmentation algorithm
from the computer vision field (Felzenszwalb & Huttenlocher,
2004), a third method (graph/size) combining the graph-
joining segmentation with object size filtering, a fourth method
(thresholding/size) assembled from simple textbook image
analysis pieces (Gonzalez & Woods, 2002) and a fifth method
(watershed) based on the widely used watershed algorithm
(Gonzalez & Woods, 2002). As a model data set for our
benchmarking analysis, we tested our segmentation methods
on a genome-wide image-based RNAi depletion screen in D.
melanogaster Kc167 cells designed to identify defects in HP1
nuclear localization.

Figure 1A shows the results of applying each of the five
image segmentation algorithms to the epifluorescence images
of Hoechst-stained Kc167 cells. These methods produced
distinct segmentation patterns ranging from the efficient
identification of nuclei in the recursive thresholding method
to the graph/size method that produced several improperly
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Fig. 1. Image segmentation methods used for benchmarking. (A) Image segmentation methods applied to DNA-stained Kc167 cells. The leftmost panels
(DNA) show two example images (bar = 25 μm). The series of 10 panels on the right depict the binary mask created after each image segmentation
method was applied to the two sample images. Grey pixels represent objects and black pixels represent background. (B) Flowchart of each of the five
segmentation methods used for benchmarking.

segmented areas. Based on visual inspection, these methods
provide a range of segmentation performance for testing our
benchmarking approach.

We previously performed an image-based high-throughput
screen and found that image data from automated microscopy
can vary widely in quality with regard to focus, signal-to-noise
and cell density (Erhardt et al., 2008). We expected that these
deviations from optimal image quality would compromise
the efficiency of image segmentation; thus, we evaluated the
performance of each image segmentation method with image
data sets designed to mimic these variations. We created a

set of benchmarking images representing variation in focus
(Fig. 2A), signal-to-noise (Fig. 2C) and cell density (Fig. 2E)
by systematically defocusing images, putting neutral density
filters into the light path and plating cells on cover slips at
different densities.

To compare the performance of different automated
segmentation methods in analyzing our benchmark data
set, we manually segmented the benchmarking images by
drawing circles around nuclei in the Hoechst stained images
and used this as our reference segmentation. We then
quantitatively evaluated the robustness of each segmentation
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Fig. 2. Quantitative benchmarking of image segmentation. Sample images of Kc167 cells fixed and stained for DNA and HP1 are shown in panels (A),
(C) and (E) (bar = 25 μm), and quantification of the proportion of nuclei correctly segmented versus the quantitative benchmark is shown in panels
(B), (D) and (F). (A, B) Benchmarking based on focal plane. Cells were imaged at 0.4 μm axial intervals from −4.8 to +4.8 μm around the focal plane.
The quantification is the mean ± SEM of the proportion of objects correctly segmented in three images. (C, D) Benchmarking based on signal-to-noise.
The signal-to-noise was varied both by inserting neutral density filters into the light path and by changing the exposure time. (C) Representative images
acquired at different signal-to-noise ratios. (D) The quantification represents a seven-point moving average ± SEM (of these seven points) of the proportion
of objects correctly segmented in each image. (E, F) Benchmarking based on cell density. (E) Images of cells plated over a 16-fold density range. The cell
density was calculated by counting the number of nuclei per field and dividing by the field size. (F) The quantification is a five-point moving average ±
SEM (of these five points) of the proportion of objects correctly segmented in each image.

method in two ways: how closely the segmentation obtained
from a given method matched that obtained manually,
and how closely the phenotypic scoring matched the score
obtained from the manually segmented image.

To quantify the segmentation efficiency of each algorithm,
we classified each segmented object as belonging to one of
five categories: correct, indicating a one-to-one matchup with
the manual segmentation; missed, indicating an object in

the manual segmentation with no overlapping object in the
automated segmentation; false positive, indicating an object in
the automated segmentation with no overlapping object in the
manual segmentation; oversegmented, indicating an object in
the manual segmentation overlapping with multiple objects in
the automated segmentation and undersegmented, indicating
an object in the automated segmentation overlapping with
multiple objects in the manual segmentation. The proportion
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of correctly segmented objects with respect to variation in focal
plane, signal-to-noise and cell density is plotted in Fig. 2B,
D and F, respectively. The proportion of objects classified as
missed, false positive, undersegmented and oversegmented
with respect to each type of variation are shown in Supporting
Figure S1.

The proportion of objects classified as correct varied strongly
with focus and signal-to-noise, but only weakly with cell
density (Fig. 2B, D and F). Variation with focal plane was
continuous (Fig. 2B), but the variation with respect to signal-
to-noise ratio was more steplike: below a certain characteristic
signal-to-noise value, each method was ineffectual at correctly
identifying any objects (Fig. 2D). Above that value, the
fraction of correctly identified nuclei increased until it reached
a final value that varied little with further increase in
signal-to-noise. The recursive thresholding method performed
significantly better than the other three methods for all varied
parameters while the graph/size method performed the least
well. Surprisingly, even 4.8 μm out of focus, and at signal-to-
noise as low as 3.5, the recursive thresholding method was
able to correctly identify more than half of the objects.

We observed that some methods produced characteristic
errors when they did not correctly segment images.
The graph/size method and the watershed method (at
low signal-to-noise and out of focus) tended to produce
many false positives, whereas the graph/thresholding and
thresholding/size methods produced few false positives but
tended to undersegment images (Supporting Figure S1).
Stereotyped segmentation errors may have a more detrimental
effect in certain applications; thus, a segmentation method
that minimizes these errors can be chosen accordingly.

The ultimate goal of image segmentation is to identify
objects that can be analyzed and phenotypically scored.
We quantified the success of each segmentation method
by calculating the ratio of the HP1 fluorescence to the
DNA fluorescence in the regions identified by automated
segmentation and comparing that ratio to the same ratio
produced by manual segmentation. The phenotypic value
produced by the segmentation (which included all objects, not
just ones classified as correct in the previous analysis) showed
little variation over the full range of benchmarking conditions
(Supporting Figure S2). The graph/size method produced
phenotype values consistently significantly different than the
other methods, indicating that it is possible to distinguish this
method from the others based on phenotype value as well as
segmentation quality.

Determination of data acquisition requirements for statistical
significance

A clear advantage of performing a segmentation
benchmarking experiment independent of a high-throughput
screen is that the information gained from the benchmarking
can feed back into the design of the screen. In particular,

the screen can be designed to avoid problems in the image
segmentation methods (e.g. to focus images more carefully if
the method fails on out-of-focus images).

Benchmarking experiments also provide the potential to
inform the amount of data collection required during the
screen to ensure statistically significant phenotype detection.
To test this idea, we determined the data acquisition
requirements for a high-throughput screen given a particular
phenotype and a particular image analysis method. In
practice, many single-cell distributions of phenotypes are
decidedly non-Gaussian, so to avoid any statistical test that
makes assumptions about the distribution of the data we used
the rank sum test as a nonparametric method to determine
statistical significance. We depleted HP1 from Kc167 cells by
dsRNA treatment and performed a rank sum test to compare
this population of cells with a control population treated with
water. The P-value for the hypothesis that the two populations
were drawn from the same distribution was less than 10−290.
We compared two separately treated control populations
against each other and found that the P-value was greater
than 0.7, indicating that the 10−290 P-value between the
control and dsRNA-treated populations was not simply caused
by variation between two uniformly treated populations.

We estimated the amount of data required to detect the
HP1 depletion phenotype at a desired significance level
by performing a data-removal test. We randomly sampled
a chosen number of cells from the experimental HP1
depleted population, applied the rank sum test to this
subset and the entire control population, and calculated the
average P-value over many such subsets. We plotted the
P-value versus the sample size to determine the number
of cells required to achieve a particular significance level
(Fig. 3A). Surprisingly, we found that we only needed a
sample size of about 15 cells to achieve significance at the
10−9 level for the recursive thresholding, graph/thresholding
and thresholding/size methods. It is possible to achieve high
significance in this experiment with such a small sample
size because we compared each experimental sample against
the entire population of control cells (500–1000 cells was
typical). Additional control data is inexpensive and easy to
collect, and because the same population of cells can serve
as controls for many experimental treatments increasing the
amount of control data can partially compensate for the lower
significance values associated with a smaller experimental
population.

The dependence of the P-value on a benchmarking
parameter such as focal plane change should closely mirror the
dependence of the phenotypic value on the same parameter.
To test this, we performed the data removal test for each
segmentation method over the full range of focal planes
previously analyzed. We compared the entire population of
control cell images taken at a specific focal plane with the
random images from the population of RNAi-treated cells
at the same focal plane (Fig. 3B). The graph/thresholding,
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Fig. 3. Data removal test to determine data
acquisition requirements. (A) Determination of
the number of cells required for given statistical
significance level for each analysis method. Control
or HP1-depleted cell populations were compared
by dividing the integrated HP1 intensity by the
integrated DNA intensity for each cell then using a
data removal test to calculate the number of cells
necessary to distinguish between the control and
experimental populations at different significance
levels. The mean P-value from the rank sum test over
100 random samples is plotted versus the size of the
sample for each of the five segmentation methods.
(B) Dependence of the sample size needed for statistical
significance at P < 10−9 on focal plane. Cells treated
as in (A) were imaged at 0.4 μm intervals from −4.8
to +4.8 μm around the focal plane. The data removal
test was repeated for each set of control and RNAi
images at each focus step. The sample size required to
achieve significance at the 10−9 level is plotted versus
distance from optimal focus.

thresholding/size, recursive thresholding and watershed
methods showed very little dependence of the P-value on
focal plane, consistent with the result that the phenotype
value shows little dependence on focal plane (Supporting
Figure S2A).

In an actual screen, many phenotypes of interest will not
have the full strength of the positive control phenotype.
To test the ability of each algorithm to detect intermediate
phenotypes, we depleted Kc167 cells with HP1 dsRNA for 16,
24, 40 or 72 h to generate cells with partial HP1 depletion.
Figure 4A shows images of the intermediate phenotypes,
and Fig. 4B shows a quantification of the phenotype value
for each of the five automated methods as well for manual
segmentation. All of the automated methods except the
graph/size method were able to accurately quantify the
intermediate phenotypes as well as the manual segmentation.

The graph/size method underestimated the phenotype at
intermediate times.

We determined the amount of data required to significantly
detect intermediate phenotypes by repeating the data removal
test for each intermediate phenotype using each analysis
method. The ability to significantly detect intermediate
phenotypes at significance levels ranging from 0.05 to 10−9

showed a steep dependence on the sample size (Fig. 5A–C).
After 16 h of dsRNA treatment resulting in 4% knockdown
(quantified as 100% – HP1-to-DNA ratio normalized to a
no RNA control), no method produced significance to the
10−9 level even when using the full population of ∼350 cells
(Fig. 5A), only the recursive thresholding method was
significant at the 10−4 level (Fig. 5B) and all but the graph size
method were significant at the P < 0.05 level (Fig. 5C). By 24 h
treatment resulting in 22% knockdown, all but the graph/size
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Fig. 4. Quantification of intermediate HP1 depletion phenotypes. A) Images of Kc167 cells treated with HP1 dsRNA for 0, 16, 24, 40 or 72 h, and fixed
and stained for DNA and HP1 (bar = 25 μm). (B) A phenotype value for each object in an image was determined by calculating the ratio of HP1 to DNA
integrated intensity within each object. (B) The mean HP1/DNA ratio ± SD on a per cell basis normalized to a no RNA treatment control versus time of
RNAi treatment for all five segmentation methods and the manual segmentation.

method produced significance with less than 100 cells, and
by 40 h treatment causing 55% knockdown, graph/size
was significant with around 600 cells (variability in DNA
staining caused a decrease in graph/size method segmentation
efficiency at this timepoint), and the other methods needed
fewer than 20 cells for significance.

Application to different phenotypes

To demonstrate that our methodology can be used for
a variety of phenotypes, and to examine its ability to
discern among analysis methods on a more demanding
segmentation problem, we created a second benchmarking
data set to analyze the distribution of HP1 between chromatin
and the cytoplasm at different cell cycle stages. This is
particularly relevant to the biology of HP1, which is known to
dissociate from chromatin during mitosis and then relocalize to
heterochromatin in interphase (Kellum et al., 1995; Sugimoto
et al., 2001). We stained HeLa cells with phalloidin (to visualize
actin), Hoechst (to visualize DNA) and anti-HP1 antibody,
and used the DNA and actin information to segment not

only nuclei but also the cell boundary. We expected this to
be a much more difficult task for automated segmentation as
the actin staining of adjacent cells often appears continuous
(Fig. 6).

We developed modified (seeded) versions of all five
segmentation algorithms used for the Kc167 cell data set
that perform the segmentation on the actin channel, but
incorporate the location of the nuclei in the image to refine
estimates of cell boundaries and numbers; these modifications
are detailed in Section ‘Materials and methods’ and outlined in
Fig. 6B. Figure 6A shows the results of applying these seeded
methods to actin images of HeLa cells. As we observed with the
Kc167 cell data set, the five methods display widely variable
segmentation efficiencies.

To determine the segmentation efficiency of each modified
method, we generated benchmarking image data sets to test
the methods by systematically varying the focus (Supporting
Figure S3A), signal-to-noise (Supporting Figure S3C) and
cell density (Supporting Figure S3E). These benchmarking
images were manually segmented by drawing many-sided
polygons to approximate the cell boundaries, and this manual
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Fig. 5. Determination of the data acquisition requirements by data removal test for intermediate phenotypes. The populations of cells shown in Fig. 4
were used for a data removal test. The absence of a data point for a given time, method and significance level denotes that not even the full population of
cells tested as significant. (A) Sample size required for significance at P < 10−9 versus time of RNAi treatment. (B) Sample size required for significance at
P < 10−4 versus time of RNAi treatment. (C) Sample size required for significance at P < 0.05 versus time of RNAi treatment.

segmentation was used to classify each object produced
by an automated method as correct, missed, false positive,
undersegmented or oversegmented. Supporting Figures 3B,
3D and 3F show the proportion of objects classified as correctly
segmented as a function of focus, signal-to-noise and cell
density, respectively. The graph/size method showed a strong
dependence on focus and cell density but all other methods
were robust to focus and cell density variation. All methods
showed a strong dependence on signal-to-noise ratio, failing
below a value of about 5. The seeded version of the graph/size
method consistently produced the best segmentation over a

wide range of conditions, by contrast to its performance on
the previous Kc167 cell data set.

Different segmentation methods showed different
characteristic errors on our human cell data set (Supporting
Figure S4). The recursive thresholding and thresholding/size
methods tended to miss cells; the watershed method tended to
over- or undersegment cells. False positives were close to zero
for all methods, as the information incorporated about the
location of nuclei led the methods to discard cells that clearly
had no nucleus. Quantification of each classification for
each benchmark for all five methods is shown in Supporting
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Fig. 6. Seeded image segmentation methods used for benchmarking. (A) Image segmentation methods applied to actin-stained HeLa cells. The leftmost
panels (actin) show two example images (bar = 20 μm). The series of 10 panels on the right depict the binary mask created after applying each seeded
image segmentation method. Grey pixels represent objects and black pixels represent background. (B) Flowchart of each of the five seeded segmentation
methods used for benchmarking.

Figure S4. The systematic errors we observed on the human
cell data set were distinct from those observed during the
segmentation of our Drosophila cell data set. This demonstrates
the importance of generating segmentation problem specific
benchmarking data sets when comparing different image
analysis methods.

To extract a phenotype value (chromatin vs. cytoplasmic
localization of HP1) from the images, we quantified the ratio
of the average intensity of HP1 staining in the nucleus to the
average intensity of HP1 staining in the cytoplasm on a per cell
basis. The results of this quantification over the full range of
benchmarking conditions are shown in Supporting Figure S5.
By contrast to our results with the Drosophila cell data set, the

phenotype value showed a strong dependence on both focal
plane and signal-to-noise. This dependence was also present
for manually segmented images; thus, this strong dependence
on signal-to-noise does not result from poor segmentation
at lower signal-to-noise, but rather from an actual change
in the phenotype value. This can be explained by the fact
that the cytoplasmic staining was already at the noise level
in most cells over the full range of benchmark conditions as
would be expected for a nuclear protein in predominantly
interphase cells. However, the phenotype values obtained
from the different methods varied widely with respect to
the value obtained from the manual segmentation (even for
those methods that performed very well), indicating that the
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phenotype value for this data set is very sensitive to the quality
of image segmentation.

To determine whether we could detect a statistically
significant change in phenotype when the variation in
phenotype values was high, we generated image data sets
under conditions that forced HP1 to localize predominantly
to the DNA or throughout the cytoplasm. Phosphorylation
of histone H3 by aurora kinase causes HP1 dissociation from
chromatin during mitosis in human cells (Fischle et al., 2005;
Hirota et al., 2005). We treated cells with nocodazole to
depolymerize microtubules and arrest cells in mitosis, and then
we stained these cells with phalloidin (for actin), with Hoechst
(for DNA), and with anti-tubulin and anti-HP1 antibodies.
Example images from untreated and nocodazole-treated cells
are shown in Fig. 7A. The phenotype was quantified for each
of the drug treatments and normalized to the value for the
control-treated population analyzed by manual segmentation.
Although the values obtained from each segmentation method
varied, all methods except the thresholding/size method could

detect the decrease in the ratio of chromatin-associated to
cytoplasmic HP1 (Fig. 7B).

To assess the statistical power of each method to distinguish
the phenotype, we again turned to the data removal test,
where a rank sum test was applied to the full population of
control-treated cells and decreasing numbers of nocodazole-
treated cells. Supporting Figure S6A shows the dependence
of the average P-value over 100 repeats of random data
removal on the number of cells included in the test. The
graph/size method had statistical power comparable to the
manual segmentation; the watershed and graph/thresholding
methods had somewhat better power than manual
segmentation (these segmented mitotic cells accurately, but
non-mitotic cells less accurately, which selected for cells
with the phenotype); the thresholding/size and recursive
thresholding methods had significantly lower statistical power
than the manual segmentation. We confirmed that the
statistical power varied with benchmarking conditions by
examining the dependence of the number of cells required

Fig. 7. Quantification of HP1 redistribution. (A) Images of control HeLa cells and cells synchronized by nocodazole treatment stained for DNA, actin,
tubulin and HP1 (bar = 20 μm). (B) The ratio of nuclear to cytoplasmic HP1 staining in nocodazole-arrested and untreated control cells. The mean ratio
± SEM normalized to the value of manual segmentation of the control treated cells from 16 images is shown for all segmentation methods.
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Fig. 8. Comparison of the benchmarking methodology applied to two different analysis problems. The Kc167 cell and HeLa cell data sets were subjected
to the data removal test (Fig. 3 and Supporting Figure S4, respectively) but with P-value cutoffs at P < 10−9, P < 10−4 or P < 0.05. The number of objects
required to attain these P-value cutoffs are plotted versus P-value for each segmentation method and each data set. The seeded recursive thresholding
method did not produce statistical significance at any of the three P-value cutoffs, and the seeded thresholding/size method did not produce statistical
significance at the P < 10−9 level.

for significance at P < 10−9 on focal plane (Supporting
Figure S6B). In agreement with the benchmarking results, the
number of cells required for significance depended strongly on
focus when the segmentation efficiency or phenotype value
depended strongly on focus.

To compare the results of the benchmarking methodology
between the Drosophila and human cell data sets, we
determined the number of cells required for significance at
P < 10−9, P < 10−4 and P < 0.05 for each method in the
Kc167 cell data set and in the HeLa cell data set (Fig. 8).
This comparison demonstrates that a single segmentation
and analysis method is unlikely to be appropriate for different
image analysis problems, but that the best method among a
group can be determined a priori. For instance, although the
thresholding/size method performs very well on the Kc167
cell data set, its seeded counterpart is less able to discern the
phenotype in the HeLa cell data set. This provides confidence in
the ability to distinguish a phenotype for a given task as well
as an estimation of the data acquisition requirements that
will be needed to discern a given phenotype in a large-scale
screen.

Discussion

The use of RNAi and small molecule inhibitor collections in
cell-based phenotypic screening has enabled the collection of
an unprecedented amount of image-based phenotypic data,
yet the efficient computational analysis of this data remains a
significant challenge. Many image segmentation and analysis
algorithms, as well as many image data sets for benchmarking
them, exist, but no method or benchmarking data set is
optimal for all screening problems. Currently, most image-
based screening efforts involve performing the experimental
component of a screen then creating new analysis methods

or modifying existing methods until the desired information is
extracted from the images.

We have demonstrated that performing small
benchmarking experiments combined with statistical analysis
can be used (1) to quantitatively assess the quality of different
image segmentation methods for a given screening problem
and (2) to determine the data acquisition requirements during
screening to ensure statistically significant detection of a
given phenotype.

Because benchmarking and analysis can be carried out
before performing a screen, the information gleaned from
benchmarking can be used to determine the parameters (e.g.,
focus or signal-to-noise) that need to be most tightly controlled
and the amount of data that must be collected for each
treatment in the full screen. In the absence of universally
applicable segmentation algorithms or benchmarking data
sets, this methodology enables image-based screens to proceed
even with imperfect methods through a priori determination of
the experimental parameters and data collection requirements
for significant phenotype detection.

The steps that we followed for setting up our benchmarking
experiment should be generally applicable to any high-
throughput screen. First, we chose the benchmarking
parameters for our screen. In our case, intermediate phenotype
generation, commonly encountered image variation and
changes in cell density are reasonable parameters to vary for
image-based RNAi or chemical screens. We treated cells with
RNAs or chemicals for varying amounts of time to generate
intermediate phenotypes, and varied signal-to-noise, cell
density and focal plane because these variations commonly
occur in high-throughput imaging screens. Second, we
selected image analysis methods for comparison. We have
chosen five widely applicable methods for our benchmarking
that were likely to be appropriate for segmenting our data set.
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The specific image analysis methods will vary significantly
depending on the nature of the screen but the software we
have developed is modular in design to enable relative ease in
new method addition. Third, once the methods were chosen,
we generated segmentation masks and phenotypic values and
if desired a manually segmented data set as a ‘gold standard’.
We have automated the classification and comparison of
segmentation methods so that the efficiency of segmentation
can be quickly assessed and the results plotted to determine
which analysis method to use. Finally, we ran a data removal
test on the phenotype values to estimate the number of cells
required for significance at a desired level.

In practice, high-throughput screening often aims to find
multiple phenotypes. Our methodology is equally applicable to
such screens, as long as a positive and negative control data set
can be generated for each phenotype of interest. Because this
methodology identifies the optimal method among a group for
the detection of a given phenotype, this benchmarking can be
performed separately for each phenotype of interest to identify
effective image segmentation methods for any phenotype.
Our approach is likely to produce more reliable results than
choosing a one-size-fits-all method that may not be optimal
for any phenotype.

Application of this benchmarking and analysis
methodology to feed back into experimental screen design
should prove generally useful for high-throughput high-
content imaging screens. Furthermore, this method allows
quantitative statements to be made about detectable
phenotypes in a screen, and quantitative assessment of which
image analysis methods are optimal for any given data set.
The methods we present should allow significant savings in
acquisition and analysis costs and facilitate the collection of
higher quality data with improved information content.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Quantitative benchmarking of segmentation
efficiency. For each panel, objects were classified into one
or more of five categories: correct, missed, false positives,
undersegmented or oversegmented. Correct segmentation is
shown in Fig. 2. The proportion of objects classified as (from
top to bottom) missed, false positive, undersegmented and
oversegmented is plotted versus the benchmark parameter.
(A) Benchmarking based on focal plane. The mean proportion
of cells segmented in each category ± SEM from three
images. (B) Benchmarking based on signal-to-noise. The
quantification is a seven-point moving average ± SEM (of
these seven points) of the object classification for each image.
(C) Benchmarking based on cell density. The quantification is
a five-point moving average ± SEM (of these five points) of the
object classification for each image.

Fig. S2. Quantitative benchmarking of phenotype detection.
Kc167 cells were fixed and stained for HP1 and DNA, and
segmented by each of the five methods. A phenotype value
for each object in an image was determined by dividing the
integrated HP1 intensity within that object by the integrated
DNA intensity within the same object. (A) Benchmarking
based on focal plane. Cells were imaged at 0.4 μm axial
intervals from −4.8 to +4.8 μm around the focal plane. The
quantification is the mean ± SEM from three images. (B)
Benchmarking based on signal-to-noise. Signal-to-noise was
varied by inserting neutral density filters into the light path
and adjusting the exposure time. The quantification is a seven-
point moving average ± SEM (of these seven points) on a per
image basis of the set of images where at least one object
was detected. (C) Benchmarking based on cell density. The
cell density was calculated by counting the number of nuclei
per field and dividing by the field size. The quantification is a
five-point moving average ± SEM (of these five points) of the
phenotype value for each image.

Fig. S3. Quantitative benchmarking of seeded image
segmentation. Sample images of HeLa cells fixed and stained
for DNA and actin are shown in panels (A), (C) and E (bar =
20 μm), and quantification of the proportion of nuclei correctly
segmented versus the quantitative benchmark is shown in

panels (B), (D) and (F). (A, B) Benchmarking based on focal
plane. Cells were imaged at 0.8 μm axial intervals from
−8.0 to +8.0 μm around the focal plane. The quantification
indicates the mean ± SEM of the proportion of objects
correctly segmented in 16 images. (C, D) Benchmarking based
on signal-to-noise. Signal-to-noise was varied by inserting
neutral density filters into the light path and changing
the exposure time. The quantification represents a seven-
point moving average ± SEM (of these seven points) of the
proportion of objects correctly segmented in each image.
(E, F) Benchmarking based on cell density. The cell density
was calculated by counting the number of nuclei per
field and dividing by the field size. The quantification is
a five-point moving average ± SEM (of these five points)
of the proportion of objects correctly segmented in each
image.

Fig. S4. Quantitative benchmarking of seeded segmentation
efficiency. The proportion of objects classified as (from
top to bottom) missed, false positive, undersegmented and
oversegmented is plotted versus the quantitative benchmark.
(A) Benchmarking based on focal plane. The mean proportion
of cells segmented in each category ± SEM from 16 images
is shown. (B) Benchmarking based on signal-to-noise. The
quantification is a seven-point moving average ± SEM (of
these seven points) of the object classification for each image.
(C) Benchmarking based on cell density. The quantification is
a five-point moving average ± SEM (of these five points) of the
object classification for each image.

Fig. S5. Quantitative benchmarking of phenotype detection
with seeded segmentation methods. The variation in
phenotype values, representing the ratio of nuclear to
cytoplasmic HP1 staining, is shown for each benchmark
parameter. (A) Benchmarking based on focal plane. Cells
were imaged at 0.8 μm axial intervals from −8.0 to +8.0 μm
around the focal plane. The quantification is the mean ±
SEM on a per cell basis with cells pooled from three images.
(B) Benchmarking based on signal-to-noise. Signal-to-noise
was varied by inserting neutral density filters into the light
path and changing the exposure time. The quantification is
a seven-point moving average ± SEM on a per image basis
of the set of images where at least one object was detected.
(C) Benchmarking based on cell density. The cell density was
calculated by counting the number of nuclei per field and
dividing by the field size. The quantification is a five-point
moving average ± SEM of the phenotype value for each image.

Fig. S6. Data removal test to determine data acquisition
requirements. (A) Determination of the number of cells
required for given statistical significance level for each analysis
method. Control or nocodazole-treated cell populations were
compared by dividing the average HP1 intensity within the
seed DNA region by the average HP1 intensity within the
same cell but not in the seed region and then using a data
removal test to calculate the number of cells necessary to
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distinguish between the control and experimental populations
at different significance levels. The mean P-value from the
rank sum test over 100 random samples is plotted versus the
size of the sample for each of the five segmentation methods.
(B) Dependence of the sample size needed for statistical
significance at P < 10−9 on focal plane. Cells treated as in (A)
were imaged at 0.8 μm axial intervals from −8.0 to +8.0 μm
around the focal plane. The data removal test was repeated
for each set of control and nocodazole images at the same

focal plane. The sample size required to achieve significance
at the 10−9 level is plotted versus distance from optimal
focus.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the article.
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